In this post, two types of Correlations will be discussed, the non-parametric correlation called Spearman's Rank Correlation, and the parametric correlation called the Pearson Correlation.

__Spearman's Rank Correlation__
Spearman's Rank Correlation $\rho$ is a non-parametric measure of the relationship between two variables, and tests whether these variables have a monotonic relationship.

Suppose two populations, with the same number of samples, have a monotonic relationship. If these two populations were paired together, and the pairs sorted by the magnitude of the first element in ascending order, the second elements would be ordered by magnitude in ascending order too. Conversely if the first element of the pair was used to order the pairs in descending order, the second element of the pair would be ordered in descending order too. This relationship would hold true if we ordered the second element of the pair, and examined the ordering of the first element. Thus, each of the pair of samples would be ordered in the

If two populations are anti-monotonic with respect to each other, then if these two populations were paired together, and the pairs sorted by the magnitude of the first element in ascending order, the second elements would be ordered by magnitude in

Spearman's Rank Correlation is bounded in value, between $-1$ and $+1$, for when the variables are related in either an anti-monotonic or monotonic manner with each other respectively, and is given by the following equation:-

where $x_i$ and $y_i$ are the result of converting $n$ (raw) samples $x[i]$ and $y[i]$ to their ranks respectively, and $\bar{x}$ and $\bar{y}$ are the mean of the ranks $x_i$ and $y_i$ respectively.

If there are no duplicate values of the raw samples ($x[i]$ and $y[i]$), i.e. no tied ranks, the above formula (Eq. 1) simplifies to

Suppose two populations, with the same number of samples, have a monotonic relationship. If these two populations were paired together, and the pairs sorted by the magnitude of the first element in ascending order, the second elements would be ordered by magnitude in ascending order too. Conversely if the first element of the pair was used to order the pairs in descending order, the second element of the pair would be ordered in descending order too. This relationship would hold true if we ordered the second element of the pair, and examined the ordering of the first element. Thus, each of the pair of samples would be ordered in the

*same*direction.If two populations are anti-monotonic with respect to each other, then if these two populations were paired together, and the pairs sorted by the magnitude of the first element in ascending order, the second elements would be ordered by magnitude in

*descending*order. Conversely if the first element of the pair was used to order the pairs in descending order, the second element of the pair would be ordered in ascending order. This relationship would hold true if we ordered the second element of the pair, and examined the ordering of the first element. Thus, each of the pair of samples would be ordered in the*opposite*direction.Spearman's Rank Correlation is bounded in value, between $-1$ and $+1$, for when the variables are related in either an anti-monotonic or monotonic manner with each other respectively, and is given by the following equation:-

$\Large \rho=\frac{\sum_{i=1}^{n}{(x_i-\bar{x})(y_i-\bar{y})}}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2\sum_{i=1}^{n}(y_i-\bar{y})^2}}$ (Eq. 1)

where $x_i$ and $y_i$ are the result of converting $n$ (raw) samples $x[i]$ and $y[i]$ to their ranks respectively, and $\bar{x}$ and $\bar{y}$ are the mean of the ranks $x_i$ and $y_i$ respectively.

If there are no duplicate values of the raw samples ($x[i]$ and $y[i]$), i.e. no tied ranks, the above formula (Eq. 1) simplifies to

$\Large \rho=1-\frac{6\sum_{i=1}^{n}d_i^2}{n(n^2-1)}$ (Eq. 2)

where $d_i=x_i-y_i$. A derivation of this follows.

When there are no ties

When there are no ties

$\sum_{i=1}^{n}(x_i-\bar{x})^2=\sum_{i=1}^{n}(y_i-\bar{y})^2$ (Eq. 3)

Also, $\bar{x}=\bar{y}$ regardless of whether there are ties or not.

Expanding the left hand side of (Eq. 3), we have

$\large \sum_{i=1}^{n}(x_i-\bar{x})^2=\sum_{i=1}^{n}(x_i^2-2x_i\bar{x}+\bar{x}^2)$

$\large =\frac{n(n+1)(n+2)}{6}-\frac{n(n+1)^2}{2}+\frac{n(n+1)^2}{4}$

$\large =\frac{n(n^2-1)}{12}$ (Eq. 4)

where we have used the identities

$\large \sum_{i=1}^{n}x_i^2=1^2+2^2+...+n^2=\frac{n(n+1)(n+2)}{6}$

and

$\large \sum_{i=1}^{n}x_i=1+2+...+n=\frac{n(n+1)}{2}$

Thus, the denominator of (Eq. 1) is $\large \frac{n(n^2-1)}{12}$.

Examining the numerator of (Eq. 1), we can expand this to

$\sum_{i=1}^{n}(x_i-\bar{x})^2$ - $\sum_{i=1}^{n}(x_i-\bar{x})^2$+ $\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$

$\large \sum_{i=1}^{n}(x_i-\bar{x})^2=\sum_{i=1}^{n}(x_i^2-2x_i\bar{x}+\bar{x}^2)$

$\large =\frac{n(n+1)(n+2)}{6}-\frac{n(n+1)^2}{2}+\frac{n(n+1)^2}{4}$

$\large =\frac{n(n^2-1)}{12}$ (Eq. 4)

where we have used the identities

$\large \sum_{i=1}^{n}x_i^2=1^2+2^2+...+n^2=\frac{n(n+1)(n+2)}{6}$

and

$\large \sum_{i=1}^{n}x_i=1+2+...+n=\frac{n(n+1)}{2}$

Thus, the denominator of (Eq. 1) is $\large \frac{n(n^2-1)}{12}$.

Examining the numerator of (Eq. 1), we can expand this to

$\sum_{i=1}^{n}(x_i-\bar{x})^2$ - $\sum_{i=1}^{n}(x_i-\bar{x})^2$

Using (Eq. 3) , we can further expand the numerator to

$\sum_{i=1}^{n}(x_i-\bar{x})^2$ - $0.5\sum_{i=1}^{n}(x_i-\bar{x})^2$ - $0.5\sum_{i=1}^{n}(y_i-\bar{y})^2$ + $\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$

Dividing the expanded numerator by the denominator, (Eq. 1) becomes

$\Large \rho=1-\frac{\sum_{i=1}^{n}(x_i-\bar{x}-y_i+\bar{y})^2}{2\sum_{i=1}^{n}(x_i-\bar{x})^2}$

Substituting (Eq. 4), we have

$\Large \rho=1-\frac{6\sum_{i=1}^{n}(x_i-y_i)^2}{n(n^2-1)}$

If we denote $d_i=x_i-y_i$, we end up with

$\Large \rho=1-\frac{6\sum_{i=1}^{n}d_i^2}{n(n^2-1)}$

which is the simplified expression for $\rho$ when no ties are present.

As Spearman's Rank Correlation is a non-parametric test, it will be robust to the presence of outliers in the datasets.

Consider the raw sample pairs ($x[i]$,$y[i]$) as below

1 , 1

5 , 4

3 , 2

3 , 3

Their ranks ($x_i$,$y_i$) are on the right:-

($x[i]$,$y[i]$) ($x_i$,$y_i$) ($x_i$-$\bar{x}$) ($y_i$-$\bar{y}$)

1 , 1 1, 1 -1.5 -1.5

5 , 4 4, 4 1.5 1.5

3 , 2 2.5, 2 0 -0.5

3 , 3 2.5, 3 0 0.5

The numerator of $\rho$ is ($-1.5 \times -1.5 + 1.5 \times 1.5 + 0 \times -0.5 + 0 \times 0.5$), which is $4.5$. The denominator of $\rho$ is $\sqrt{(2.25 + 2.25 + 0 + 0) \times (2.25 + 2.25 + 0.25 + 0.25)}$ which is $4.743416$. Thus $\rho$ is $4.5/4.743416$, which is $0.948683$.

There is a Spearman Rank Correlation Calculator in this blog, which can be found here.

The Pearson Correlation is the parametric equivalent of the Spearman Rank Correlation, and is given by the equation

$\Large r=\frac{\sum_{i=1}^{n}{(x[i]-\bar{x})(y[i]-\bar{y})}}{\sqrt{\sum_{i=1}^{n}(x[i]-\bar{x})^2\sum_{i=1}^{n}(y[i]-\bar{y})^2}}$

where $x[i]$ and $y[i]$ are the raw samples from the two populations that are to be correlated against, and $\bar{x}$ and $\bar{y}$ their respective means.

Like the Spearman Rank Correlation, the Pearson Correlation has a minimum of $-1$ and a maximum of +1. Unlike the Spearman Rank Correlation, it is sensitive to the value of the sample, and will be $+1$ only if the two populations are exactly linearly related with positive gradient, and $-1$ only if the two populations are exactly linearly related with negative gradient.

It is worth noting that the square of the Pearson Correlation ($r^2$) is the Coefficient of Determination, that was encountered in the Linear Regression post, in this blog. There is a Pearson Correlation Calculator in this blog, which can be found here

Dividing the expanded numerator by the denominator, (Eq. 1) becomes

$\Large \rho=1-\frac{\sum_{i=1}^{n}(x_i-\bar{x}-y_i+\bar{y})^2}{2\sum_{i=1}^{n}(x_i-\bar{x})^2}$

Substituting (Eq. 4), we have

$\Large \rho=1-\frac{6\sum_{i=1}^{n}(x_i-y_i)^2}{n(n^2-1)}$

If we denote $d_i=x_i-y_i$, we end up with

$\Large \rho=1-\frac{6\sum_{i=1}^{n}d_i^2}{n(n^2-1)}$

which is the simplified expression for $\rho$ when no ties are present.

As Spearman's Rank Correlation is a non-parametric test, it will be robust to the presence of outliers in the datasets.

**Spearman's Rank Correlation - A worked example**Consider the raw sample pairs ($x[i]$,$y[i]$) as below

1 , 1

5 , 4

3 , 2

3 , 3

Their ranks ($x_i$,$y_i$) are on the right:-

($x[i]$,$y[i]$) ($x_i$,$y_i$) ($x_i$-$\bar{x}$) ($y_i$-$\bar{y}$)

1 , 1 1, 1 -1.5 -1.5

5 , 4 4, 4 1.5 1.5

3 , 2 2.5, 2 0 -0.5

3 , 3 2.5, 3 0 0.5

The numerator of $\rho$ is ($-1.5 \times -1.5 + 1.5 \times 1.5 + 0 \times -0.5 + 0 \times 0.5$), which is $4.5$. The denominator of $\rho$ is $\sqrt{(2.25 + 2.25 + 0 + 0) \times (2.25 + 2.25 + 0.25 + 0.25)}$ which is $4.743416$. Thus $\rho$ is $4.5/4.743416$, which is $0.948683$.

There is a Spearman Rank Correlation Calculator in this blog, which can be found here.

__Pearson Correlation__The Pearson Correlation is the parametric equivalent of the Spearman Rank Correlation, and is given by the equation

$\Large r=\frac{\sum_{i=1}^{n}{(x[i]-\bar{x})(y[i]-\bar{y})}}{\sqrt{\sum_{i=1}^{n}(x[i]-\bar{x})^2\sum_{i=1}^{n}(y[i]-\bar{y})^2}}$

where $x[i]$ and $y[i]$ are the raw samples from the two populations that are to be correlated against, and $\bar{x}$ and $\bar{y}$ their respective means.

Like the Spearman Rank Correlation, the Pearson Correlation has a minimum of $-1$ and a maximum of +1. Unlike the Spearman Rank Correlation, it is sensitive to the value of the sample, and will be $+1$ only if the two populations are exactly linearly related with positive gradient, and $-1$ only if the two populations are exactly linearly related with negative gradient.

It is worth noting that the square of the Pearson Correlation ($r^2$) is the Coefficient of Determination, that was encountered in the Linear Regression post, in this blog. There is a Pearson Correlation Calculator in this blog, which can be found here

Hello Everyone out there,I am here to give my testimony about a Herbalist doctor who helped me . I was infected with HERPES SIMPLEX VIRUS in 2011, i went to many hospitals for cure but there was no solution, so I was thinking how can I get a solution out so that my body can be okay. One day I was in the river side thinking where I can go to get solution. so a lady walked to me telling me why am I so sad and i open up all to her telling her my problem, she told me that she can help me out, she introduce me to a doctor who uses herbal medication to cure HERPES SIMPLEX VIRUS and gave me his email, so i mail him. He told me all the things I need to do and also give me instructions to take, which I followed properly. Before I knew what is happening after two weeks the HERPES SIMPLEX VIRUS that was in my body got vanished . so if you are also heart broken and also need a help, you can also email him at {oliha.miraclemedicine@gmail.com}

ReplyDeleteor whatsapp him number: +2349038382931. or website is https://olihamiraclemedicine.webs.com/

Contact him today and you will have a testimony...Good luck!

Dr. OLIHA Also Cures:

1. HIV/AIDS

2. HERPES 1/2

3. CANCER

4. ALS (Lou GehrigĂ˘€™s disease)

5. Hepatitis B

6. chronic pancreatic

7. Emphysema

8. COPD (Chronic Obstructive Pulmonary Disease

DR OYAGU herbal medicine is a good remedy for herpes simplex virus cure. My name is MIGNON WRIGHT , am from USA,I am here to give my testimony about DR OYAGU who helped me in my life, i want to inform the public how i was cured from (HERPES SIMPLEX VIRUS) by DR OYAGU, i visited different hospital but they gave me list of drugs like Familiar, Zovirax, and Valtrex which is very expensive to treat the symptoms and never cured me. I was browsing through the Internet searching for remedy on HERPES and i saw comment of people talking about how DR OYAGU cured them, when i contacted him he gave me hope and send a Herbal medicine to me that i took and it seriously worked for me, am a free person now without any problem, my HERPES result came out negative, I pray to God to never let me and my family forget you in our life, am now cured permanently, you can also get your self cured my friends if you really need this doctor help, you can reach him on his website ;https://oyaguspellcaster.wixsite.com/oyaguherbalhome Email: oyaguherbalhome@gmail.com or via whatsapp +2348101755322

ReplyDeleteAll thanks to Dr Raymond for helping me to get my penis longer and bigger with his cream in just two week his cream is very active and also it work fast for everyone who have used it, the best thing about his herbal cream is that it does not have side effects and the results is permanent. Note he can also cure the below sicknesses and disease PREMATURE EJACULATIONLOW SPERM COUNTERECTILE DYSFUNCTIONHIV/AIDS CUREHERPES CUREINFECTION CUREPILESTROKEHEART FAILUREYou can email him if you need his help via: drraymondherbalcenter@gmail.com or WhatsApp him via: +2348116744524

ReplyDeleteI'm here to testify about what DR. OYAGU did for me. I have been suffering from (GENITAL HERPES VIRUS) disease for the past 2 years and had constant pain and inching, especially in my private part. During the first year, I had faith in God that i would be cured someday. This disease started circulating all over my body and I have been taking treatment from my doctor, few weeks ago I came across a testimony of Shayla Bosschart on the internet testifying about a Man called DR. OYAGU on how he cured her from 7 years HSV 2. And she also gave the email address of this man, advise anybody to contact him for help on any kind of diseases that he would be of help, so I emailed him telling him about my (HSV 2) he told me not to worry that I was going to be cured!! Well, I never doubted him I have faith he can cure me too,, DR. OYAGU prepared and sent me Healing Soap, roots and herbs which I took. In the first one week, I started experiencing changes all over me, after two weeks of using his Roots/ Herbs, Oil and Soap, I was totally cured. no more inching , pain on me anymore as DR. OYAGU assured me. After some time I went to my doctor to do another test behold the result came out negative. So friends my advise is if you have such disease or know anyone who suffers from it or any other disease like HPV, HBV, HIV, ALS, HBP, CANCER etc. you can contact DR. OYAGU for help via email} oyaguherbalhome@gmail.com visit his website https://oyaguspellcaster.wixsite.com/oyaguherbalhome whatsapp him through his mobile} +2348101755322. , Thanks once again DR. OYAGU for making me a happy woman again.

ReplyDelete