Wednesday, 27 March 2013

Inverse CDF method: Simulating random variates

Using the inverse CDF method, you can generate a random number from any of the 17 distributions supported by SciStatCalc by generating a uniformly distributed random number (which has a value between 0 and 1) as below,

Uniform Random Number Generator - double precision Tausworthe based algorithm - required six 32-bit integer seeds

and then copying and pasting the red result onto the probability field of the distribution of interest (swipe down first!), filling in the lower limit field (which will be either 0 or -inf, depending on the support of the distribution) and all the relevant parameter fields.

Press calculate to evaluate the upper limit - this value will be your desired random variate. These are shown below, for the case where we wish to generate a beta distributed random variable with alpha set to 1 and beta set to 2 - the result is approximately 0.3899.

inverse CDF method of simulating random variates



    Website paling ternama dan paling terpercaya di Asia ^^
    Sistem pelayanan 24 Jam Non-Stop bersama dengan CS Berpengalaman respon tercepat :)
    Memiliki 9 Jenis game yang sangat digemari oleh seluruh peminat poker / domino

    Website SahabatQQ

    Cerita Dewasa Majalah Dewasa 2020

    Berita Pariwisata Wisata Sahabat

    Berita Kesehatan Info Kesehatan Terbaru

    Berita Poker SahabatQQ Win 88

    Kemenangan SahabatQQ SahabatQQ Win Terus

  2. SahabatQQ: Agen DominoQQ Agen Domino99 dan Poker Online Aman dan Terpercaya
    Website SahabatQQ
    WA 1 : +855887159498
    WA 2 : +855972076840
    Telegram 1 :+85515769793
    Telegram 2 : +855972076840
    FACEBOOK : SahabatQQ Reborn
    Agen Domino99